

AP Physics 1 - Test 05 - Force and Motion

Score: _____

1.	A brick	slides	on a	a horizontal	surface.	Which	of the	following	will in	crease	the
ma	gnitude	of the	frict	tional force	on it?			0			

- A Putting a second brick on top
- (B) Decreasing the surface area of contact
- C Increasing the surface area of contact
- D Decreasing the mass of the brick
- (E) None of the above

2. The coefficient of kinetic friction:

- (A) is in the direction of the frictional force
- (B) is in the direction of the normal force
- c is the ratio of force to area
- (D) can have units of newtons
- (E) is none of the abovis none of the above

3. When the brakes of an automobile are applied, the road exerts the greatest retarding force:

- (A) While the wheels are sliding
- B Just before the wheels start sliding

4. A forward horizontal force of 12N is used to pull a 240-N crate at constant velocity across a horizontal floor. The coefficient of friction is:

- (A) 0.5
- B 0.05
- (c) 2.0
- (D) 0.2
- (E) 20
- 5. The speed of a 4,0 N hockey puck, sliding across a level ice surface, decreases at the rate of 0.61 m/s². The coefficient of kinetic friction between the puck and ice is: HINT: Find the puck's mass first.
- (A) 0.062
- B 0.41
- (c) 0.62
- D 1.2
- (E) 9.8

(E) 20 sinθ N

11. The box is sitting on the floor of an elevator. The elevator is accelerating upward. The magnitude of the normal force on the box is

$$\bigcirc$$
 $F_n = mg$

$$\binom{C}{F_n} < mg$$

$$\bigcap$$
 $F_n = 0$

(E) Not enough information to tell

12. A box is being pulled to the right at steady speed by a rope that angles upward. In this situation:

$$\mathbb{B}$$
 $F_n = mg$

$$C$$
 $F_n < mg$

$$\bigcap$$
 $F_n = 0$

(E) Not enough information

13. Which force do we interpret as our "apparent weight?"

- (A) Force of gravity
- B Normal Force

14. A 50-kg student (mg = 490 N) gets in a 1000-kg elevator at rest and stands on a metric bathroom scale. As the elevator accelerates upward, the scale reads

- (A) > 490 N
- (B) 490 N
- C < 490 N
- (D) 0 N

15. A 50-kg student (mg = 490 N) gets in a 1000-kg elevator at rest and stands on a metric bathroom scale. Suddenly, the student feels weightless. Should he/she be worried? Why?

16	A boy on	a wallah aliwfaca i	بيطاه والبيطية	berizental K	ana with tar	saion T I	The bey
10.	A box on	a rough surface is	s bulled by a	a norizontai r	obe with ter	ision I. I	ine box
					-		
is no	it moving	In this situation:					
13 110	C IIIO VIIIG	illi cilis sicaacioii.					

- \bigcirc $f_s > T$
- \bigcirc fs = T
- \bigcirc fs < T
- \bigcirc fs = 0

17. A box with a weight of 100 N is <u>at rest</u>. It is then pulled by a 30 N horizontal force. Is this enough force to get it to move?

- (A) Yes
- B No
- (c) Not enough infomation

18. A box with a weight of 100 N is <u>in motion</u>. It is then pulled by a 30 N horizontal force. Is this enough force to get it to keep moving?

- (A) Yes
- B No
- (c) Not enough information

19. A box is being pulled to the right over a rough surface. $F_T > f_k$, so the box is speeding up. Suddenly the rope breaks. What happens to the box <u>after</u> the rope breaks.

- A Stops immediately.
- (B) Continues with the speed it had when the rope broke.
- C Continues speeding up for a short while, then slows and stops.
- D Keeps its speed for a short while, then slows and stops.
- (E) Slows steadily until it stops.

- 20. All three 50-kg blocks are at rest. The tension in rope 2 is
- \bigcirc Greater than the tension in rope 1.
- B Equal to the tension in rope 1.
- C Less than the tension in rope 1.

21. Boxes A and B are being pulled to the right on a frictionless surface; the boxes are speeding up. Box A has a larger mass than Box B. How do the two tension forces compare?

- $T_1 = T_2$
- D Not enough information

22. The two masses are at rest. The pulleys are frictionless. The scale is in kg. The scale reads

- (A) 0 kg
- B 5 kg
- (c) 10 kg

23. The top block is accelerated across a frictionless table by the falling mass m. The string is massless, and the pulley is both massless and frictionless. The tension in the string is

- \bigcirc A $F_T < mg$
- (B) $F_T = mg$
- (c) $F_T > mg$

24. A car travels to the right at *constant velocity*. The net force on the car is:

- (A) Right
- B Left
- (c) Up
- D Down
- (E) Zero

25. A constant force of 8.0 N is exerted for 4.0 s on a 16-kg object initially at rest. The change in speed of this object will be:

- (A) 0.5 m/s
- (B) 2 m/s
- (c) 4 m/s
- (D) 8 m/s
- E 32 m/s

26. A 400-N block is dragged along a horizontal surface by an applied force F as shown. The coefficient of kinetic friction is μ_k = 0.4 and the block moves at <u>constant</u> <u>velocity</u>. The magnitude of F is:

A B C D	100 N 150 N 200 N 290 N 400 N
27. an <i>a</i>	A block of mass m is pulled at <u>constant velocity</u> along a rough horizontal floor by applied force T as shown. The magnitude of the frictional force is:
A	$T\cos\theta$
B	T sin θ
\bigcirc	zero
$\bigcirc \hspace{-0.5em} \mathbb{D}$	mg
E	mg cos θ
28. as s	A block of mass m is pulled along a rough horizontal floor by an applied force T hown. The Normal Force acting on the block is:
\bigcirc A	mg T
\bigcirc B	mg – T cos θ
(c)	$mg + T \cos \theta$
	$mg - T \sin \theta$
(E)	$mg + T sin \theta$
29. des	Why do raindrops fall with constant speed during the later stages of their cent?
\bigcirc A	The gravitational force is the same for all drops
\bigcirc B	Air resistance just balances the force of gravity
C	The drops all fall from the same height
D	The force of gravity is negligible for objects as small as raindrops
E	Gravity cannot increase the speed of a falling object to more than 9.8m/s
30. con:	Two blocks (A and B) are in contact on a horizontal frictionless surface. A 36-N stant force is applied to A as shown. The magnitude of the force of A on B is:
A	1.5 N $m_A = 4.0 \text{ kg}$ $m_B = 20 \text{ kg}$
\bigcirc B	6.0 N
(c)	29 N
	30 N
(E)	36 N